Understanding the reason behind the emotions placed in the social media plays a key role to learn mood characterization of any written texts that are not seen before. Knowing how to classify the mood characterization leads this technology to be useful in a variety of fields. The Latent Dirichlet Allocation (LDA), a topic modeling algorithm, was used to determine which emotions the tweets on Twitter had in the study. The dataset consists of 4000 tweets that are categorized into 5 different emotions that are anger, fear, happiness, sadness, and surprise. Zemberek, Snowball, and first 5 letters root extraction methods are used to create models. The generated models were tested by using the proposed n-stage LDA method. With the proposed method, we aimed to increase model’s success rate by decreasing the number of words in the dictionary. By using the multi-stages LDA, we were able to perform better (2-stages:70.5%, 3-stages:76.4%) than the state of the art result (60.4%) which was achieved using the plain LDA for 5 classes.
CITATION STYLE
Güven, Z. A., Diri, B., & Çakaloğlu, T. (2019). Emotion Detection with n-stage Latent Dirichlet Allocation for Turkish Tweets. Academic Platform Journal of Engineering and Science, 467–472. https://doi.org/10.21541/apjes.459447
Mendeley helps you to discover research relevant for your work.