Glycation of the Major Milk Allergen β-Lactoglobulin Changes Its Allergenicity by Alterations in Cellular Uptake and Degradation

44Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Scope: During food processing, the Maillard reaction (МR) may occur, resulting in the formation of glycated proteins. Glycated proteins are of particular importance in food allergies because glycation may influence interactions with the immune system. This study compared native and extensively glycated milk allergen β-lactoglobulin (BLG), in their interactions with cells crucially involved in allergy. Methods and results: BLG was glycated in MR and characterized. Native and glycated BLG were tested in experiments of epithelial transport, uptake and degradation by DCs, T-cell cytokine responses, and basophil cell degranulation using ELISA and flow cytometry. Glycation of BLG induced partial unfolding and reduced its intestinal epithelial transfer over a Caco-2 monolayer. Uptake of glycated BLG by bone marrow–derived dendritic cells (BMDC) was increased, although both BLG forms entered BMDC via the same mechanism, receptor-mediated endocytosis. Once inside the BMDC, glycated BLG was degraded faster, which might have led to observed lower cytokine production in BMDC/CD4+ T-cells coculture. Finally, glycated BLG was less efficient in induction of degranulation of BLG-specific IgE sensitized basophil cells. Conclusions: This study suggests that glycation of BLG by MR significantly alters its fate in processes involved in immunogenicity and allergenicity, pointing out the importance of food processing in food allergy.

Cite

CITATION STYLE

APA

Perusko, M., van Roest, M., Stanic-Vucinic, D., Simons, P. J., Pieters, R. H. H., Cirkovic Velickovic, T., & Smit, J. J. (2018). Glycation of the Major Milk Allergen β-Lactoglobulin Changes Its Allergenicity by Alterations in Cellular Uptake and Degradation. Molecular Nutrition and Food Research, 62(17). https://doi.org/10.1002/mnfr.201800341

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free