The transcription factor PU.1, encoded by the murine Sfpi1 gene (SPI1 in humans), is a member of the Ets transcription factor family and plays a vital role in commitment and maturation of the myeloid and lymphoid lineages. Murine studies directly link primary acute myeloid leukaemia (AML) and decreased PU.1 expression in specifically modified strains. Similarly, a radiationinduced chromosome 2 deletion and subsequent Sfpi1 point mutation in the remaining allele lead to murine radiation-induced AML. Consistent with murine data, heterozygous deletion of the SPI1 locus and mutation of the -14 kb SPI1 upstream regulatory element were described previously in human primary AML, although they are rare events. Other mechanisms linked to PU.1 downregulation in human AML include TP53 deletion, FLT3-ITD mutation and the recurrent AML1-ETO [t(8;21)] and PML-RARA [t(15;17)] translocations. This review provides an up-to-date overview on our current understanding of the involvement of PU.1 in the initiation and development of radiation-induced AML, together with recommendations for future murine and human studies.
CITATION STYLE
Verbiest, T., Bouffler, S., L.Nutt, S., & Badie, C. (2014, July 10). PU.1 downregulation in murine radiation-induced acute myeloid leukaemia (AML): From molecular mechanism to human AML. Carcinogenesis. Oxford University Press. https://doi.org/10.1093/carcin/bgv016
Mendeley helps you to discover research relevant for your work.