Human type 1 insulin-like growth factor receptor is a homodimeric receptor tyrosine kinase that signals into pathways directing normal cellular growth, differentiation and proliferation, with aberrant signalling implicated in cancer. Insulin-like growth factor binding is understood to relax conformational restraints within the homodimer, initiating transphosphorylation of the tyrosine kinase domains. However, no three-dimensional structures exist for the receptor ectodomain to inform atomic-level understanding of these events. Here, we present crystal structures of the ectodomain in apo form and in complex with insulin-like growth factor I, the latter obtained by crystal soaking. These structures not only provide a wealth of detail of the growth factor interaction with the receptor's primary ligand-binding site but also indicate that ligand binding separates receptor domains by a mechanism of induced fit. Our findings are of importance to the design of agents targeting IGF-1R and its partner protein, the human insulin receptor.
CITATION STYLE
Xu, Y., Kong, G. K. W., Menting, J. G., Margetts, M. B., Delaine, C. A., Jenkin, L. M., … Lawrence, M. C. (2018). How ligand binds to the type 1 insulin-like growth factor receptor. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03219-7
Mendeley helps you to discover research relevant for your work.