Nanoscaffolds for guided cardiac repair: The new therapeutic challenge of regenerative medicine

8Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cardiovascular diseases represent the leading cause of death and disability in the world. At the end-stage of heart failure, heart transplantation remains the ultimate option. Therefore, due to the numerous drawbacks associated with this procedure, new alternative strategies to repair the wounded heart are required. Cell therapy is a potential option to regenerate functional myocardial tissue. The characteristics of the ideal cardiac cell therapy include the use of the proper cell type and delivery methods as well as the choice of a suitable biomaterial acting as a cellular vehicle. Since traditional delivery methods are characterized by several counter backs, among which low cell survival, new engineered micro- and nanostructured materials are today extensively studied to provide a good cardiac therapy. In this review, we report the most recent achievements in the field of cell therapy for myocardial infarction treatment and heart regeneration, focusing on the most commonly used cell sources, the traditional approaches used to deliver cells at the damaged site, and a series of novel technologies based on recent advancements of bioengineering, highlighting the tremendous potential that nanoscaffolds have in this framework. © 2013 Letizia Ventrelli et al.

Cite

CITATION STYLE

APA

Ventrelli, L., Ricotti, L., Menciassi, A., Mazzolai, B., & Mattoli, V. (2013). Nanoscaffolds for guided cardiac repair: The new therapeutic challenge of regenerative medicine. Journal of Nanomaterials. https://doi.org/10.1155/2013/108485

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free