Over recent years, a major breakthrough in marine animal tracking has occurred with the advent of Fastloc-GPS that provides highly accurate location data even for animals that only surface briefly such as sea turtles, marine mammals and penguins. We assessed the accuracy of Fastloc-GPS locations using fixed trials of tags in which >45 000 locations were obtained. Procedures for determining the speed of travel and heading were developed by simulating tracks and then adding Fastloc-GPS location errors. The levels of detail achievable for speed and heading estimates were illustrated by using empirical Fastloc-GPS data for a green turtle (Chelonia mydas, Linnaeus, 1758) travelling over 3000 km across the Indian Ocean. The accuracy of Fastloc-GPS locations varied as a function of the number of GPS satellites used in the location calculation. For example, when Fastloc-GPS locations were calculated using 4 GPS satellites, 50% of locations were within 36 m and 95% within 724 m of the true position. These values improved to 18 and 70 m, respectively, when 6 satellites were used. Simulations indicated that for animals travelling around 2·5 km h-1 (e.g. turtles, penguins and seals) and depending on the number of satellites used in the location calculation, robust speed and heading estimates would usually be obtained for locations only 1-6 h apart. Fastloc-GPS accuracy is several orders of magnitude better that conventional Argos tracking or light-based geolocation and consequently will allow new insights into small-scale movement patterns of marine animals.
CITATION STYLE
Dujon, A. M., Lindstrom, R. T., & Hays, G. C. (2014). The accuracy of Fastloc-GPS locations and implications for animal tracking. Methods in Ecology and Evolution, 5(11), 1162–1169. https://doi.org/10.1111/2041-210X.12286
Mendeley helps you to discover research relevant for your work.