The overheating of heat pipes, poor transfer of heat across the absorber and finned heat pipes, and inability to provide hot water in the late evening hours are major problems associated with conventional heat pipe vacuum collector systems. The amalgamation of highly conductive storage material between the absorber tube (heat collecting surface) and the heat pipe is an effective way to overcome these problems. In this study, a stearic acid amalgamated vacuum tube solar collector system was designed and fabricated and its thermal output compared with a conventional vacuum tube system without storage material under the same environmental conditions. The experimental results showed that the amalgamation of stearic acid as storage material enhanced the thermal output of the solar system compared to the conventional one. The desired heat gain of the solar system with storage material increased by 31.30, 23.34, and 18.78% for Test 1_40 °C, Test 2_45 °C, and Test 3_50 °C, respectively. The technoeconomic analysis showed that almost 118.80 USD in revenue could be earned by the proposed solar system at the end of 15 years. The total running cost of ELG and the developed solar system was observed to be 202.62 and 86.70 USD, respectively. On average, the cost of hot water production using the solar system and ELG was found to be 0.0016 and 0.004 USD/L, respectively. The value of LEC was found to be 0.062 USD/electricity unit, which was much lower than the LEC value of ELG (0.116 USD/electricity unit). The value of NPW (73.73 USD) indicated high acceptability of the proposed system. The payback time is lower than the life of the system, indicating its suitability for use in the commercial sector. Therefore, the proposed solar system is highly recommended over conventional water heating systems in urban and rural areas.
CITATION STYLE
Chopra, K., Tyagi, V. V., Pathak, S. K., Khajuria, A., Pandey, A. K., Rahman, N. A., … Sari, A. (2023). Impact of Stearic Acid as Heat Storage Material on Energy Efficiency and Economic Feasibility of a Vacuum Tube Solar Water Heater. Energies, 16(11). https://doi.org/10.3390/en16114291
Mendeley helps you to discover research relevant for your work.