Promoting Effects of Copper and Iron on Ni/MSN Catalysts for Methane Decomposition

5Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Copper and iron-based bimetallic nickel catalysts supported on Mesostructured Silica Nanoparticles (MSNs) with compositions of 50% Ni–5% Cu/MSN and 50% Ni–5% Fe/MSN were prepared using an impregnation method, and they were compared with a monometallic 50% Ni–MSN catalyst for their activity and stability in methane decomposition reaction. The influence of promoters, such as Cu and Fe, at different reaction temperatures (700 °C, 800 °C and 900 °C) was investigated. The results revealed that the Cu and Fe-promoted catalysts significantly increased the hydrogen yield in methane decomposition compared with the unpromoted catalyst. This could be attributed to the formation of Ni–Cu and Ni–Fe bimetallic alloys in the catalysts, respectively, and this favored the stability of the catalysts. With increasing reaction temperature, the hydrogen yield also increased. However, the hydrogen yield and the lifetime of the nickel catalyst were enhanced upon the addition of iron compared to copper at all the reaction temperatures. The analysis conducted over the spent catalysts validated the formation of multi-walled carbon nanotubes with a bamboo-like internal channel over the catalysts along with a high crystallinity and graphitization degree of the carbon produced.

Cite

CITATION STYLE

APA

Hasnan, N. S. N., Pudukudy, M., Yaakob, Z., Kamarudin, N. H. N., Lim, K. L., & Timmiati, S. N. (2023). Promoting Effects of Copper and Iron on Ni/MSN Catalysts for Methane Decomposition. Catalysts, 13(7). https://doi.org/10.3390/catal13071067

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free