The lungs are a significant organ site of murine cytomegalovirus (mCMV) latency. We have shown that activity of the major immediate-early promoter (MIEP), which drives the transcription from the ie1-ie3 transcription unit, does not inevitably initiate the productive cycle (S. K. Kurz, M. Rapp, H.-P. Steffens, N. K. A. Grzimek, S. Schmalz, and M. J. Reddehase, J. Virol. 73:482–494, 1999). Thus, even though MIEP activity governed by the MIEP-enhancer is unquestionably the first condition for recurrence, regulation of the enhancer by transcription factors is not the only mechanism controlling latency. Specifically, during latency, focal and stochastic MIEP activity in lung tissue was found to selectively generate IE1 transcripts, while transactivator-specifying IE3 transcripts were missing. This suggested a control of mCMV latency that is effectual at IE1-IE3 precursor mRNA cotranscriptional processing. Here we have used this model for studying the kinetics of reactivation and recurrence in individual lung tissue pieces after hematoablative, genotoxic treatment. Notably, reactivation was triggered, but the number of transcriptionally active foci in the lungs did not increase over time. This result is not compatible with a model of spontaneous reactivations accumulating after withdrawal of immune control. Instead, the data support the idea that reactivation is an induced event. In some pieces, focal reactivation generated IE3 transcripts but not gB transcripts, while other pieces contained foci that had proceeded to gB transcription, and only a few foci actually reached the state of virus recurrence. This finding indicates the existence of several sequentially ordered control points in the transition from mCMV latency to recurrence.
CITATION STYLE
Kurz, S. K., & Reddehase, M. J. (1999). Patchwork Pattern of Transcriptional Reactivation in the Lungs Indicates Sequential Checkpoints in the Transition from Murine Cytomegalovirus Latency to Recurrence. Journal of Virology, 73(10), 8612–8622. https://doi.org/10.1128/jvi.73.10.8612-8622.1999
Mendeley helps you to discover research relevant for your work.