Revealing the Nature of a Lyα Halo in a Strongly Lensed Interacting System at z = 2.92

  • Solimano M
  • González-López J
  • Aravena M
  • et al.
6Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Spatially extended halos of H i Ly α emission are now ubiquitously found around high-redshift star-forming galaxies. But our understanding of the nature and powering mechanisms of these halos is still hampered by the complex radiative transfer effects of the Ly α line and limited angular resolution. In this paper, we present resolved Multi Unit Spectroscopic Explorer (MUSE) observations of SGAS J122651.3+215220, a strongly lensed pair of L * galaxies at z = 2.92 embedded in a Ly α halo of L Ly α = (6.2 ± 1.3) × 10 42 erg s −1 . Globally, the system shows a line profile that is markedly asymmetric and redshifted, but its width and peak shift vary significantly across the halo. By fitting the spatially binned Ly α spectra with a collection of radiative transfer galactic wind models, we infer a mean outflow expansion velocity of ≈211 km s −1 , with higher values preferentially found on both sides of the system’s major axis. The velocity of the outflow is validated with the blueshift of low-ionization metal absorption lines in the spectra of the central galaxies. We also identify a faint ( M 1500 ≈ −16.7) companion detected in both Ly α and the continuum, whose properties are in agreement with a predicted population of satellite galaxies that contribute to the extended Ly α emission. Finally, we briefly discuss the impact of the interaction between the central galaxies on the properties of the halo and the possibility of in situ fluorescent Ly α production.

Cite

CITATION STYLE

APA

Solimano, M., González-López, J., Aravena, M., Johnston, E. J., Moya-Sierralta, C., Barrientos, L. F., … Tejos, N. (2022). Revealing the Nature of a Lyα Halo in a Strongly Lensed Interacting System at z = 2.92. The Astrophysical Journal, 935(1), 17. https://doi.org/10.3847/1538-4357/ac7c1a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free