Biomass burning (BB) plays an important role in the formation of heavy pollution events during harvest seasons in the Beijing–Tianjin–Hebei (BTH) region by releasing trace gases and particulate matter into the atmosphere. A better understanding of spatial-temporal variations of BB in BTH is required to assess its impacts on air quality, especially on heavy haze pollution. The fourth version of the Global Fire Emissions Database (GFED4)’s fire counts and carbon emissions data were used in this research, which shows the varying number of fire counts in China from 2003 to 2020 demonstrated a fluctuating but generally rising trend, with a peak in 2013. Most fire counts were concentrated in three key periods: March (11%), June–July (33%), and October (9.68%). The increase in fire counts will inevitably lead to the growth of carbon emissions. The four major vegetation types of the fires were agriculture (58.1%), followed by grassland (35.5%), and forest (4.1%), with the fewest in peat. In addition, a separate study for the year 2020 found that the fire counts and carbon emissions were different for this year, with the overall average trend in the study time. For example, the monthly peak fire counts changed from June to March. The cumulative emissions of carbon, CO, CO2, CH4, dry matter, and particulate matter from BB in BTH reached 201 Gg, 39 Gg, 670 Gg, 2 Gg, 417 Gg, and 3 Gg in 2020, respectively.
CITATION STYLE
Zhao, Y., Xu, R., Xu, Z., Wang, L., & Wang, P. (2022). Temporal and Spatial Patterns of Biomass Burning Fire Counts and Carbon Emissions in the Beijing–Tianjin–Hebei (BTH) Region during 2003–2020 Based on GFED4. Atmosphere, 13(3). https://doi.org/10.3390/atmos13030459
Mendeley helps you to discover research relevant for your work.