MTOR Suppresses Environmental Particle-Induced Inflammatory Response in Macrophages

  • Li Z
  • Wu Y
  • Chen H
  • et al.
17Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

Increasing toxicological and epidemiological studies have demonstrated that ambient particulate matter (PM) could cause adverse health effects including inflammation in the lung. Alveolar macrophages represent a major type of innate immune responses to foreign substances. However, the detailed mechanisms of inflammatory responses induced by PM exposure in macrophages are still unclear. We observed that coarse PM treatment rapidly activated mechanistic target of rapamycin (MTOR) in mouse alveolar macrophages in vivo, and in cultured mouse bone marrow–derived macrophages, mouse peritoneal macrophages, and RAW264.7 cells. Pharmacological inhibition or genetic knockdown of MTOR in bone marrow–derived macrophages leads to an amplified cytokine production upon PM exposure, and mice with specific knockdown of MTOR or ras homolog enriched in brain in myeloid cells exhibit significantly aggregated airway inflammation. Mechanistically, PM activated MTOR through modulation of ERK, AKT serine/threonine kinase 1, and tuberous sclerosis complex signals, whereas MTOR deficiency further enhanced the PM-induced necroptosis and activation of subsequent NF κ light-chain–enhancer of activated B cells (NFKB) signaling. Inhibition of necroptosis or NFKB pathways significantly ameliorated PM-induced inflammatory response in MTOR-deficient macrophages. The present study thus demonstrates that MTOR serves as an early adaptive signal that suppresses the PM-induced necroptosis, NFKB activation, and inflammatory response in lung macrophages, and suggests that activation of MTOR or inhibition of necroptosis in macrophages may represent novel therapeutic strategies for PM-related airway disorders.

Cite

CITATION STYLE

APA

Li, Z., Wu, Y., Chen, H.-P., Zhu, C., Dong, L., Wang, Y., … Chen, Z.-H. (2018). MTOR Suppresses Environmental Particle-Induced Inflammatory Response in Macrophages. The Journal of Immunology, 200(8), 2826–2834. https://doi.org/10.4049/jimmunol.1701471

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free