Typically, tsunami evacuation routes are marked using signs in the transportation network and the evacuation map is made to educate people on how to follow the evacuation route. However, tsunami evacuation routes are usually identified without the support of evacuation simulation, and the route effectiveness in the reduction of evacuation risk is typically unknown quantitatively. This study proposes a simulation-based and risk-informed framework for quantitative evaluation of the effectiveness of evacuation routes in reducing evacuation risk. An agent-based model is used to simulate the tsunami evacuation, which is then used in a simulation-based risk assessment framework to evaluate the evacuation risk. The route effectiveness in reducing the evacuation risk is evaluated by investigating how the evacuation risk varies with the proportion of the evacuees that use the evacuation route. The impacts of critical risk factors such as evacuation mode (for example, on foot or by car) and population size and distribution on the route effectiveness are also investigated. The evacuation risks under different cases are efficiently calculated using the augmented sample-based approach. The proposed approach is applied to the risk-informed evaluation of the route effectiveness for tsunami evacuation in Seaside, Oregon. The evaluation results show that the route usage is overall effective in reducing the evacuation risk in the study area. The results can be used for evacuation preparedness education and hence effective evacuation.
CITATION STYLE
Wang, Z., & Jia, G. (2022). Simulation-Based and Risk-Informed Assessment of the Effectiveness of Tsunami Evacuation Routes Using Agent-Based Modeling: A Case Study of Seaside, Oregon. International Journal of Disaster Risk Science, 13(1), 66–86. https://doi.org/10.1007/s13753-021-00387-x
Mendeley helps you to discover research relevant for your work.