Energy-Efficient and High-throughput Implementations of Lightweight Block Cipher

N/ACitations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Security in resource-constrained devices has drawn the great attentions to researchers in recent years. To make secure transmission of critical information in such devices, lightweight cryptography algorithms come in light to large extend. KLEIN has been popular lightweight block cipher used to overcome such issues. In this paper, different architectures of KLEIN block cipher are presented. One of designs enhances the efficiency with regard to the throughput at the expense of a larger area. In order to make such designs, the pipelined registers are placed on different positions in datapath algorithm. The proposed design transforms the data input to protected output with the speed of 2414.13 Mbps for xc5vlx50t-3ff1136 device. In addition, the second design implementation completes either one or more than one round in only one clock and gives energy-efficient and high throughput implementations. Due to this, a trade-off between area and speed can be analyzed for high-speed applications. Moreover, this proposed design shows that with increasing the area of cipher implementation results in more transformation of plaintext into ciphertext. All results are verified and simulated for various families of Xilinx ISE design suite.

Cite

CITATION STYLE

APA

Energy-Efficient and High-throughput Implementations of Lightweight Block Cipher. (2019). International Journal of Innovative Technology and Exploring Engineering, 9(2S), 35–41. https://doi.org/10.35940/ijitee.b1022.1292s19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free