PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1

58Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Stroke severity is worsened by recruitment of inflammatory immune cells into the brain. This process depends in part on T cell activation, in which the B7 family of co-stimulatory molecules plays a pivotal role. Previous studies demonstrated more severe infarcts in mice lacking programmed death-1 (PD-1), a member of the B7 family, thus implicating PD-1 as a key factor in limiting stroke severity. The purpose of this study was to determine if this protective effect of PD-1 involves either of its ligands, PD-L1 or PD-L2.Methods: Central nervous system (CNS) inflammation and infarct volume were evaluated in male PD-L1 and PD-L2 knockout (-/-) mice undergoing 60 minutes of middle cerebral artery occlusion (MCAO) followed by 96 hours of reperfusion and compared to wild-type (WT) C57BL/6J mice.Results: PD-L1-/- and PD-L2-/- mice had smaller total infarct volumes compared to WT mice. The PD-L1-/- and to a lesser extent PD-L2-/- mice had reduced levels of proinflammatory activated microglia and/or infiltrating monocytes and CD4+ T cells in the ischemic hemispheres. There was a reduction in ischemia-related splenic atrophy accompanied by lower activation status of splenic T cells and monocytes in the absence of PD-L1, suggesting a pathogenic rather than a regulatory role for both PD-1 ligands (PD-Ls). Suppressor T cells (IL-10-producing CD8+CD122+ T cells) trafficked to the brain in PD-L1-/- mice and there was decreased expression of CD80 on splenic antigen-presenting cells (APCs) as compared to the WT and PD-L2-/- mice.Conclusions: Our novel observations are the first to implicate PD-L1 involvement in worsening outcome of experimental stroke. The presence of suppressor T cells in the right MCAO-inflicted hemisphere in mice lacking PD-L1 implicates these cells as possible key contributors for controlling adverse effects of ischemia. Increased expression of CD80 on APCs in WT and PD-L2-/- mice suggests an overriding interaction leading to T cell activation. Conversely, low CD80 expression by APCs, along with increased PD-1 and PD-L2 expression in PD-L1-/- mice suggests alternative T cell signaling pathways, leading to a suppressor phenotype. These results suggest that agents (for example antibodies) that can target and neutralize PD-L1/2 may have therapeutic potential for treatment of human stroke. © 2013 Bodhankar et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Bodhankar, S., Chen, Y., Vandenbark, A. A., Murphy, S. J., & Offner, H. (2013). PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. Journal of Neuroinflammation, 10. https://doi.org/10.1186/1742-2094-10-111

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free