β-Caryophyllene (BCP) is known as a common constitute of the essential oils of numerous food plants and primary component in Cannabis. In this study, we investigated the effect of local intraplantar (i.pl.) injection of BCP on mechanical hypersensitivity induced by partial sciatic nerve ligation (PSNL) in mice. Relative to sham operation controls, mice with the PSNL displayed a maximum level of hyperresponsiveness to von Frey metallic filament on post-operative day 7. PSNL-induced allodynia was seen in the ipsilateral side of nerve ligation, but not in the contralateral side. The i.pl. injection of BCP into the ipsilateral hindpaw to PSNL attenuated mechanical allodynia in a dose-dependent manner. BCP injection into the contralateral hindpaw did not produce anti-allodynic effects, suggesting a local peripheral anti-allodynic effect of BCP. Anti-allodynic effects induced by i.pl. injection of BCP were prevented by pretreatment with the cannabinoid (CB2) receptor antagonist AM630, but not by the CB1 receptor antagonist AM251. These data suggest that i.pl. injection of BCP could produce anti-allodynia by activating peripheral CB2 receptors, but not CB1 receptors in a mouse model of neuropathic pain. Taken together, these results suggest that peripheral CB2 receptors may contribute to the effectiveness of BCP in the treatment of neuropathic pain disorders.
CITATION STYLE
Kuwahata, H., Katsuyama, S., Komatsu, T., Nakamura, H., Corasaniti, M. T., Bagetta, G., … Takahama, K. (2012). Local Peripheral Effects of β -Caryophyllene through CB 2 Receptors in Neuropathic Pain in Mice. Pharmacology & Pharmacy, 03(04), 397–403. https://doi.org/10.4236/pp.2012.34053
Mendeley helps you to discover research relevant for your work.