In this study, for the first time, a Dynamic Expert System was developed to predict attention deficit and hyperactivity impairment in childhood. In this context, the decision-making process, which requires complex and experienced field experts to diagnose the disease, has been transferred to the developed expert system. The subject of the study was determined as prediction of attention deficit and hyperactivity disorder, which is one of the most common psychiatric disorders of childhood. The developed Dynamic Expert System consists of three basic parts, which are the knowledge base, the inference mechanism and the description unit. Data clusters are recorded as attributes and records in the knowledge base. While attributes are determined by field experts, records are composed of clinical patient data received from the Gazi Hospital, Department of Pediatric Mental Health and Diseases. Ensuring the dynamic renewal of the rule base is the most important characteristic of the study using the Naive Bayes Algorithm in the inference mechanism of the developed system. In this way, when the system encounters a new situation that is not previously encountered, it can take advantage of the existing rules and guess which class the rule belongs to. With real data, the system has been trained; and its performance was tested. As a result of this study, accuracy was determined to be 88.62%; precision was determined to be 89.2%, recall was determined to be 88.6%, f-measure was determined to be 88.6% and ROC area value was determined to be 89.8%. It was observed that the performance of the system was quite high compared to the model performance criteria.Bu çalışma ile ilk defa çocukluk çağı dikkat eksikliği ve hiperaktivite bozukluğunun öngörülmesine yönelik çocuk psikiyatristlerinin alan uzmanlığı doğrultusunda tanı çıkarımı yapabilen bir dinamik uzman sistem tasarımı geliştirilmiştir. Bu kapsamda hastalığın tanısına yönelik alan uzmanlarının karmaşık ve deneyim gerektiren karar verme süreci, geliştirilen uzman sisteme aktarılmıştır. Çalışmanın konusu gereksinim analizi yapılarak çocukluk çağının en sık görülen psikiyatrik bozukluklarından olan dikkat eksikliği ve hiperaktivite bozukluğu olarak seçilmiştir. Geliştirilen sistem bilgi tabanı, çıkarım mekanizması ve açıklama birimi olmak üzere üç temel kısımdan oluşmaktadır. Veri kümeleri, nitelikler ve kayıtlar olmak üzere bilgi tabanına kaydedilmiştir. Nitelikler alan uzmanları (çocuk psikiyatristleri) tarafından belirlenirken, kayıtlar Gazi Hastanesi Çocuk Ruh Sağlığı ve Hastalıkları Anabilim Dalından alınan kliniksel hasta verilerinden oluşmaktadır. Geliştirilen sistemin çıkarım mekanizması kısmında Naive Bayes algoritması kullanılarak, kural tabanının dinamik olarak yenilenmesinin sağlanması çalışmanın en önemli ayırt edici özelliğidir. Bu sayede sistem, daha önceden kayıtlı olmayan yeni bir durum ile karşılaştığında; mevcut kurallardan faydalanarak yeni kuralın hangi sınıfa ait olduğunu tahmin edebilmektedir. Gerçek veriler ile sistem eğitilmiş ve performansı test edilmiştir. Çalışmanın sonucunda, accuracy 88.62%, precision 89.2%, recall 88.6%, f-measure 88.6% ve ROC area değeri 89.8 % bulunmuştur. Sistemin performansının model başarım kriterlerine göre oldukça yüksek olduğu görülmüştür.
CITATION STYLE
GÖKER, H., & TEKEDERE, H. (2019). Dynamic Expert System Design for the Prediction of Attention Deficit and Hyperactivity Disorder in Childhood. Bilişim Teknolojileri Dergisi, 12(1), 33–41. https://doi.org/10.17671/gazibtd.458102
Mendeley helps you to discover research relevant for your work.