Smartphone sensor-based activity recognition by using machine learning and deep learning algorithms

14Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

Smartphones are widely used today, and it becomes possible to detect the user's environmental changes by using the smartphone sensors, as demonstrated in this paper where we propose a method to identify human activities with reasonably high accuracy by using smartphone sensor data. First, the raw smartphone sensor data are collected from two categories of human activity: motion-based, e.g., walking and running; and phone movement-based, e.g., left-right, up-down, clockwise and counterclockwise movement. Firstly, two types of features extraction are designed from the raw sensor data, and activity recognition is analyzed using machine learning classification models based on these features. Secondly, the activity recognition performance is analyzed through the Convolutional Neural Network (CNN) model using only the raw data. Our experiments show substantial improvement in the result with the addition of features and the use of CNN model based on smartphone sensor data with judicious learning techniques and good feature designs.

Cite

CITATION STYLE

APA

Liu, Q., Zhou, Z., Shakya, S. R., Uduthalapally, P., Qiao, M., & Sung, A. H. (2018). Smartphone sensor-based activity recognition by using machine learning and deep learning algorithms. International Journal of Machine Learning and Computing, 8(2), 121–126. https://doi.org/10.18178/ijmlc.2018.8.2.674

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free