Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs

204Citations
Citations of this article
119Readers
Mendeley users who have this article in their library.

Abstract

Piperlongumine is a naturally occurring small molecule recently identified to be toxic selectively to cancer cells in vitro and in vivo. This compound was found to elevate cellular levels of reactive oxygen species (ROS) selectively in cancer cell lines. The synthesis of 80 piperlongumine analogs has revealed structural modifications that retain, enhance, and ablate key piperlongumine-associated effects on cells, including elevation of ROS, cancer cell death, and selectivity for cancer cells over nontransformed cell types. Structure/activity relationships suggest that the electrophilicity of the C2-C3 olefin is critical for the observed effects on cells. Furthermore, we show that analogs lacking a reactive C7-C8 olefin can elevate ROS to levels observed with piperlongumine but show markedly reduced cell death, suggesting that ROS-independent mechanisms, including cellular cross-linking events, may also contribute to piperlongumine's induction of apoptosis. In particular, we have identified irreversible protein glutathionylation as a process associated with cellular toxicity. We propose a mechanism of action for piperlongumine that may be relevant to other small molecules having two sites of reactivity, one with greater and the other with lesser electrophilicity.

Cite

CITATION STYLE

APA

Adams, D. J., Dai, M., Pellegrino, G., Wagner, B. K., Stern, A. M., Shamji, A. F., & Schreiber, S. L. (2012). Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15115–15120. https://doi.org/10.1073/pnas.1212802109

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free