Electrochemical impedance spectroscopy for microbial fuel cell characterization

193Citations
Citations of this article
454Readers
Mendeley users who have this article in their library.

Abstract

Electrochemical impedance spectroscopy is an efficient, non-intrusive and semi-quantitative technique to characterize the performance of bio-electrochemical systems such as microbial fuel cells and enzymatic fuel cells. Indeed, quantitative interpretation of the impedance data can be obtained with the help of mechanistic models using meaningful equivalent circuits. The production of maximum power using such systems has been limited by their higher internal resistance. The contribution of several different resistances to the overall internal resistance of the system can be ascertained through the measurement of impedance using EIS, which is greatly required for understanding and engineering of its principle components leading to better enhancement of its performance. EIS has been successfully employed in most of the MFC researches helping in advancement of the field through emergence of many novel MFC designs with greater power generating capacity. In a nutshell, impedance spectroscopy provides a valuable addition to the existing biochemical and spectroscopic techniques to better optimize the electrochemical behavior of the biological system. © 2013 Sekar N, et al.

Cite

CITATION STYLE

APA

Sekar, N., & Ramasamy, R. P. (2013). Electrochemical impedance spectroscopy for microbial fuel cell characterization. Journal of Microbial and Biochemical Technology. OMICS Publishing Group. https://doi.org/10.4172/1948-5948.s6-004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free