Expediting population diversification in evolutionary computation with quantum algorithm

2Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Quantum computing's uniqueness in commencing parallel computation renders unprecedented efficient optimisation as possible. This paper introduces the adaptation of quantum processing to crowding, one of the genetic algorithmic procedures to secure undeveloped individual chromosomes in pursuit of diversifying the target population. We argue that the nature of genetic algorithm to find the best solution in the process of optimisation can be greatly enhanced by the capability of quantum computing to perform multiple computations in parallel. By introducing the relevant quantum mathematics based on Grover's selection algorithm and constructing its mechanism in a quantum simulator, we come to conclusion that our proposed approach is valid in such a way that it can precisely reduce the amount of computation query to finish the crowding process without any impairment in the middle of genetic operations.

Cite

CITATION STYLE

APA

Kim, J. S., & Ahn, C. W. (2021). Expediting population diversification in evolutionary computation with quantum algorithm. International Journal of Bio-Inspired Computation, 17(1), 63–73. https://doi.org/10.1504/IJBIC.2021.113356

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free