In recent T-cell AIDS vaccine trials, the vaccines did not prevent HIV-1 infection, although HIV-1-specific T cells were induced in the vaccinated individuals, suggesting that the T cells have a weak ability to suppress HIV-1 replication and fail to recognize circulating HIV-1. We previously demonstrated that the T-cell responses to 10 epitopes were significantly associated with good clinical outcome. However, there is no direct evidence that these T cells have strong abilities to suppress HIV-1 replication and recognize circulating HIV-1. Here, we demonstrated that the T cells specific for the 10 epitopes had strong abilities to suppress HIV-1 replication in vitro . Moreover, the T cells cross-recognized most of the circulating HIV-1 in HIV-1-infected individuals. This study suggests the use of T cells specific for these 10 epitopes in clinical trials of T-cell vaccines as a cure treatment. HIV-1-specific cytotoxic T-lymphocytes (CTLs) with strong abilities to suppress HIV-1 replication and recognize most circulating HIV-1 strains are candidates for effector T cells for cure treatment and prophylactic AIDS vaccine. Previous studies demonstrated that the existence of CTLs specific for 11 epitopes was significantly associated with good clinical outcomes in Japan, although CTLs specific for one of these epitopes select for escape mutations. However, it remains unknown whether the CTLs specific for the remaining 10 epitopes suppress HIV-1 replication in vitro and recognize circulating HIV-1. Here, we investigated the abilities of these CTLs to suppress HIV-1 replication and to recognize variants in circulating HIV-1. CTL clones specific for 10 epitopes had strong abilities to suppress HIV-1 replication in vitro . The ex vivo and in vitro analyses of T-cell responses to variant epitope peptides showed that the T cells specific for 10 epitopes recognized mutant peptides which are detected in 84.1% to 98.8% of the circulating HIV-1 strains found in HIV-1-infected Japanese individuals. In addition, the T cells specific for 5 epitopes well recognized target cells infected with 7 mutant viruses that had been detected in >5% of tested individuals. Taken together, these results suggest that CTLs specific for the 10 epitopes effectively suppress HIV-1 replication and broadly recognize the circulating HIV-1 strains in the HIV-1-infected individuals. This study suggests the use of these T cells in clinical trials. IMPORTANCE In recent T-cell AIDS vaccine trials, the vaccines did not prevent HIV-1 infection, although HIV-1-specific T cells were induced in the vaccinated individuals, suggesting that the T cells have a weak ability to suppress HIV-1 replication and fail to recognize circulating HIV-1. We previously demonstrated that the T-cell responses to 10 epitopes were significantly associated with good clinical outcome. However, there is no direct evidence that these T cells have strong abilities to suppress HIV-1 replication and recognize circulating HIV-1. Here, we demonstrated that the T cells specific for the 10 epitopes had strong abilities to suppress HIV-1 replication in vitro . Moreover, the T cells cross-recognized most of the circulating HIV-1 in HIV-1-infected individuals. This study suggests the use of T cells specific for these 10 epitopes in clinical trials of T-cell vaccines as a cure treatment.
CITATION STYLE
Murakoshi, H., Kuse, N., Akahoshi, T., Zhang, Y., Chikata, T., Borghan, M. A., … Takiguchi, M. (2019). Broad Recognition of Circulating HIV-1 by HIV-1-Specific Cytotoxic T-Lymphocytes with Strong Ability to Suppress HIV-1 Replication. Journal of Virology, 93(1). https://doi.org/10.1128/jvi.01480-18
Mendeley helps you to discover research relevant for your work.