A dynamical system for pagerank with time-dependent teleportation

25Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

We propose a dynamical system that captures changes to the network centrality of nodes as external interest in those nodes varies. We derive this system by adding time-dependent teleportation to the PageRank score. The result is not a single set of importance scores, but rather a time-dependent set. These can be converted into ranked lists in a variety of ways, for instance, by taking the largest change in the importance score. For an interesting class of dynamic teleportation functions, we derive closed-form solutions for the dynamic PageRank vector. The magnitude of the deviation from a static PageRank vector is given by a PageRank problem with complex-valued teleportation parameters. Moreover, these dynamical systems are easy to evaluate. We demonstrate the utility of dynamic teleportation on both the article graph ofWikipedia, where the external interest information is given by the number of hourly visitors to each page, and the Twitter social network, where external interest is the number of tweets per month. For these problems, we show that using information from the dynamical system helps improve a prediction task and identify trends in the data.

Cite

CITATION STYLE

APA

Gleich, D. F., & Rossi, R. A. (2014). A dynamical system for pagerank with time-dependent teleportation. Internet Mathematics, 10(1–2), 188–217. https://doi.org/10.1080/15427951.2013.814092

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free