Selected polyoxopalladates as promising and selective antitumor drug candidates

Citations of this article
Mendeley users who have this article in their library.
Get full text


Polyoxo-noble-metalates (PONMs), a class of molecular noble metal-oxo nanoclusters that combine features of both polyoxometalates and noble metals, are a promising platform for the development of next-generation antitumor metallodrugs. This study aimed to evaluate the antitumor potential against human neuroblastoma cells (SH-SY5Y), as well as toxicity towards healthy human peripheral blood cells (HPBCs), of five polyoxopalladates(II): (Na8[Pd13As8O34(OH)6]·42H2O (Pd13), Na4[SrPd12O6(OH)3(PhAsO3)6(OAc)3]·2NaOAc·32H2O (SrPd12), Na6[Pd13(AsPh)8O32]·23H2O (Pd13L), Na12[SnO8Pd12(PO4)8]·43H2O (SnPd12), and Na12[PbO8Pd12(PO4)8]·38H2O (PbPd12)), as the largest subset of PONMs. A pure inorganic, Pd13, was found as the most potent and selective antineuroblastoma agent with IC50 values (µM) of 7.2 ± 2.2 and 4.4 ± 1.2 for 24 and 48 h treatment, respectively, even lower than cisplatin (28.4 ± 7.4 and 11.6 ± 0.8). The obtained IC50 values (µM) for 24/48 h treatment with SrPd12 and Pd13L were 75.8 ± 6.7/76.7 ± 22.9 and 63.8 ± 3.6/21.4 ± 10.8, respectively, whereas SnPd12 and PbPd12 did not remarkably affect the SH-SY5Y viability (IC50 > > 100 µM). Pd13 caused depolarisation of inner mitochondrial membrane prior to superoxide ion hyperproduction, followed by caspase activation, DNA fragmentation and cell cycle arrest, all hallmarks of apoptotic cell death, and accompanied by an increase in acidic vesicles content, suggestive of autophagy induction. Importantly, Pd13 demonstrated the antitumor effect at concentrations not cytogenotoxic for normal HPBCs. On the contrary, SrPd12 and Pd13L at concentrations ≥ 1/3 IC50(24 h) decreased HPBC viability and increased % tail DNA up to 42% and 3.05 times, respectively, related to control. SnPd12 and PbPd12, previously confirmed promising antileukemic agents, did not exhibit cytogenotoxicity to HPBCs, and thus could be regarded as tumor cell specific and selective drug candidates. Graphic abstract: [Figure not available: see fulltext.]




Isakovic, A. M., Čolović, M. B., Ma, T., Ma, X., Jeremic, M., Gerić, M., … Krstić, D. (2021). Selected polyoxopalladates as promising and selective antitumor drug candidates. Journal of Biological Inorganic Chemistry, 26(8), 957–971.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free