LiDAR (Light Detection and Ranging) technology has been used to obtain geometrical attributes of tree crops in small field plots, sometimes using manual steps in data processing. The objective of this study was to develop a method for estimating canopy volume and height based on a mobile terrestrial laser scanner suited for large commercial orange groves. A 2D LiDAR sensor and a GNSS (Global Navigation Satellite System) receiver were mounted on a vehicle for data acquisition. A georeferenced point cloud representing the laser beam impacts on the crop was created and later classified into transversal sections along the row or into individual trees. The convex-hull and the alpha-shape reconstruction algorithms were used to reproduce the shape of the tree crowns. Maps of canopy volume and height were generated for a 25 ha orange grove. The different options of data processing resulted in different values of canopy volume. The alpha-shape algorithm was considered a good option to represent individual trees whereas the convex-hull was better when representing transversal sections of the row. Nevertheless, the canopy volume and height maps produced by those two methods were similar. The proposed system is useful for site-specific management in orange groves.
CITATION STYLE
Colaço, A. F., Trevisan, R. G., Molin, J. P., Rosell-Polo, J. R., & Escolà, A. (2017). A method to obtain orange crop geometry information using a mobile terrestrial laser scanner and 3D modeling. Remote Sensing, 9(8). https://doi.org/10.3390/rs9080763
Mendeley helps you to discover research relevant for your work.