Skip to main content

Photoelectrodes of Cu2O with interfacial structure of topological insulator Bi2Se3contributes to selective photoelectrocatalytic reduction of CO2towards methanol

5Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Artificial photosynthesis emerges as feasible solution to diminish CO2content in the atmosphere. Photoelectrocatalysis can diminish CO2concentration while generating useful resources such as methanol. Here an alternative multilayer photoelectrode of FTO/Cu/Bi2Se3-Se/Cu2O is developed to enhance selective reduction of CO2 towards methanol. A novel electrosynthetic approach is described as strategy to modulate the atomic composition of p-type bismuth selenide chalcogenide intralayer. This method enhanced performance and selectivity of n-type Cu2O photoelectrocatalysts. Alkaline pH conditions favored yield and selectivity towards methanol production from CO2. The formation of an n-p heterojunction affects the Cu2Operformance on CO2reduction. The novel engineered FTO/Cu/Bi2Se3-Se/Cu2O multilayer photoelectrodes allowed obtaining up to 4.5mM of methanol, which correspond to 3-fold higher concentration than conventional FTO/Cu2O electrodes reported in literature. Photoelectrodes of FTO/ Cu/Bi2Se3-Se/Cu2O overperform conventional Cu2O in terms of kinetics and selectivity towards methanol production.

Cite

CITATION STYLE

APA

Aranda-Aguirre, A., Ojeda, J., Brito, J. F., Garcia-Segura, S., Zanoni, M. a. V. B., & Alarcon, H. (2020). Photoelectrodes of Cu2O with interfacial structure of topological insulator Bi2Se3contributes to selective photoelectrocatalytic reduction of CO2towards methanol. Journal of CO2 Utilization, 39. https://doi.org/10.1016/j.jcou.2020.101154

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free