Sigma coordinate pressure gradient errors and the seamount Problem

176Citations
Citations of this article
75Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In a recent paper by Mellor et al., it was found that, in two-dimensional (x, z) applications with finite horizontal viscosity and zero diffusivity, the velocity error, associated with the evaluation of horizontal density or pressure gradients on a sigma coordinate grid, prognostically disappeared, leaving behind a small and physically insignificant distortion in the density field. The initial error is numerically consistent in that it decreases as the square of the grid increment size. In this paper, we label this error as a sigma error of the first kind. In three-dimensional applications, the authors have encountered an error that did not disappear and that has not been understood by us or, apparently, others. This is a vorticity error that is labeled a sigma error of the second kind and is a subject of this paper. Although it does not prognostically disappear, it seems to be tolerably small. To evaluate these numerical errors, the authors have adopted the seamount problem initiated by Beckman and Haidvogel. It represents a stringent test case, as evidenced by their paper, wherein the model is initialized with horizontal isopycnals, zero velocity, and no forcing; then, any velocities that develop must be considered errors. Two appendices are important adjuncts to the paper, the first providing theoretical confirmation and understanding of the numerical results, and the second delving into additional errors related to horizontal or isosigma diffusion. It is, however, shown that satisfactory numerical solutions are obtained with zero diffusivity.

Cite

CITATION STYLE

APA

Mellor, G. L., Oey, L. Y., & Ezer, T. (1998). Sigma coordinate pressure gradient errors and the seamount Problem. Journal of Atmospheric and Oceanic Technology, 15(5), 1122–1131. https://doi.org/10.1175/1520-0426(1998)015<1122:SCPGEA>2.0.CO;2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free