Wastewater treatment plants (WWTPs) are key sources of antimicrobial resistance genes (ARGs) that could influence the resistomes of microbial communities in various habitats of the receiving river ecosystem. However, it is currently unknown which habitats are most impacted and whether ARGs, like certain chemical contaminants, could be accumulated or enriched in the river ecosystem. We conducted a systematic metagenomic survey on the antibiotic resistomes of WWTP effluent, four riverine habitats (water, suspended particles, sediment, epilithic biofilm), and freshwater amphipod gut microbiomes. The impact of WWTP effluent on the downstream habitats was assessed in nine Swiss rivers. While there were significant differences in resistomes across habitats, the wastewater resistome was more similar to the resistome of receiving river water than to the resistomes of other habitats, and river water was the habitat most strongly impacted by the WWTPs effluent. The sulfonamide, beta-lactam, and aminoglycoside resistance genes were among the most abundant ARGs in the WWTP effluents, and especially aadA, sul1, and class A beta-lactamase genes showed significantly increased abundance in the river water of downstream compared to upstream locations (p < 0.05). However, this was not the case for the sediment, biofilm, and amphipod gut habitats. Accordingly, evidence for accumulation or enrichment of ARGs through the riverine food web was not identified. Our study suggests that monitoring riverine antimicrobial resistance determinants could be conducted using “co-occurrence” of aadA, sul1, and class A beta-lactamase genes as an indicator of wastewater-related pollution and should focus on the water as the most affected habitat.
CITATION STYLE
Lee, J., Ju, F., Beck, K., & Bürgmann, H. (2023). Differential effects of wastewater treatment plant effluents on the antibiotic resistomes of diverse river habitats. ISME Journal, 17(11), 1993–2002. https://doi.org/10.1038/s41396-023-01506-w
Mendeley helps you to discover research relevant for your work.