An NAD+-dependent alcohol dehydrogenase was purified to homogeneity from Nocardia fusca AKU 2123. The enzyme catalyzed (S)-specific oxidation of 3-pentyn-2-ol (PYOH), i.e., part of the stereoinversion reaction for the production of (R)-PYOH, which is a valuable chiral building block for pharmaceuticals, from the racemate. The enzyme used a broad variety of secondary alcohols including alkyl alcohols, alkenyl alcohols, acetylenic alcohols, and aromatic alcohols as substrates. The oxidation was (S)-isomer specific in every case. The K m and V max for (S)-PYOH and (S)-2-hexanol oxidation were 1.6 mM and 53 μmol/min/mg, and 0.33 mM and 130 μmol/min/mg, respectively. The enzyme also catalyzed stereoselective reduction of carbonyl compounds. (S)-2-Hexanol and ethyl (R)-4-chloro-3-hydroxybutanoate in high optical purity were produced from 2-hexanone and ethyl 4-chloro-3-oxobutanoate by the purified enzyme, respectively. The K m and V max for 2-hexanone reduction were 2.5 mM and 260 μmol/min/mg. The enzyme has a relative molecular mass of 150,000 and consists of four identical subunits. The NH2-terminal amino acid sequence of the enzyme shows similarity with those of the carbonyl reductase from Rhodococcus erythropolis and phenylacetaldehyde reductase from Corynebacterium sp. © 1999, Taylor & Francis Group, LLC. All rights reserved.
CITATION STYLE
Xie, S. X., Ogawa, J., & Shimizu, S. (1999). Nad+-dependent (s)-specific secondary alcohol dehydrogenase involved in stereoinversion of 3-pentyn-2-ol catalyzed by nocardia fusca AKU 2123. Bioscience, Biotechnology and Biochemistry, 63(10), 1721–1729. https://doi.org/10.1271/bbb.63.1721
Mendeley helps you to discover research relevant for your work.