The conventional approach to approximating the pharmacokinetics of drugs in patients with chronic kidney disease (CKD) only accounts for changes in the estimated glomerular filtration rate. However, CKD is a systemic and multifaceted disease that alters many body systems. Therefore, the objective of this exercise was to develop and evaluate a whole-body mechanistic approach to predicting pharmacokinetics in patients with CKD. Physiologically based pharmacokinetic models were developed in PK-Sim v8.0 (www.open-systems-pharmacology.org) to mechanistically represent the disposition of 7 compounds in healthy human adults. The 7 compounds selected were eliminated by glomerular filtration and active tubular secretion by the organic cation transport system to varying degrees. After a literature search, the healthy adult models were adapted to patients with CKD by numerically accounting for changes in glomerular filtration rate, kidney volume, renal perfusion, hematocrit, plasma protein concentrations, and gastrointestinal transit. Literature-informed interindividual variability was applied to the physiological parameters to facilitate a population approach. Model performance in CKD was evaluated against pharmacokinetic data from 8 clinical trials in the literature. Overall, integration of the CKD parameterization enabled exposure predictions that were within 1.5-fold error across all compounds and patients with varying stages of renal impairment. Notable improvement was observed over the conventional approach to scaling exposure, which failed in all but 1 scenario in patients with advanced CKD. Further research is required to qualify its use for first-in-CKD dose selection and clinical trial planning for a wider selection of renally eliminated compounds, including those subject to anion transport.
CITATION STYLE
Malik, P. R. V., Yeung, C. H. T., Ismaeil, S., Advani, U., Djie, S., & Edginton, A. N. (2020). A Physiological Approach to Pharmacokinetics in Chronic Kidney Disease. Journal of Clinical Pharmacology, 60(S1), S52–S62. https://doi.org/10.1002/jcph.1713
Mendeley helps you to discover research relevant for your work.