Wettability impacts residual trapping of immiscible fluids during cyclic injection

6Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Understanding the hysteretic behaviour in fluid-fluid displacement processes in porous media is critical in many engineering applications. In this work, we study the quasi-static immiscible displacement process in two-dimensional porous media during cyclic injections in the context of carbon geosequestration. The role of wettability on the residual trapping of CO is investigated numerically using an extended interface tracking algorithm. Despite that higher CO saturation can be achieved in CO-wet porous media after the first CO injection, the majority of CO is found to be unstable and can be mobilised during subsequent water injection processes. An improvement in the residual trapping of CO is observed as the number of injection cycles increases, which is associated with the dispersion of continuous CO ganglia into numerous smaller blobs. Compared with either water-wet or CO-wet porous media, it is found that less CO is trapped within the neutral-wet ones at equilibrium state after a sufficient number of injection cycles. The hysteretic behaviour of saturation between water/CO injection cycles is found to follow an exponential decay, which eventually reaches a finite value. This process corresponds to the shift of the mobile region during displacement from typical capillary fingering to a less ramified regime, which ultimately converges towards main flow channels. This work highlights the hysteretic behaviour during cyclic injections, providing insights on the wettability impacts on multiphase flow in porous media, which is of great importance in applications such as carbon geosequestration and geological hydrogen storage.

Cite

CITATION STYLE

APA

Wang, Z., Pereira, J. M., Sauret, E., & Gan, Y. (2023). Wettability impacts residual trapping of immiscible fluids during cyclic injection. Journal of Fluid Mechanics, 961. https://doi.org/10.1017/jfm.2023.222

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free