Linear temporal logic (LTL) is a specification language for finite sequences (called traces) widely used in program verification, motion planning in robotics, process mining, and many other areas. We consider the problem of learning formulas in fragments of LTL without the U -operator for classifying traces; despite a growing interest of the research community, existing solutions suffer from two limitations: they do not scale beyond small formulas, and they may exhaust computational resources without returning any result. We introduce a new algorithm addressing both issues: our algorithm is able to construct formulas an order of magnitude larger than previous methods, and it is anytime, meaning that it in most cases successfully outputs a formula, albeit possibly not of minimal size. We evaluate the performances of our algorithm using an open source implementation against publicly available benchmarks.
CITATION STYLE
Raha, R., Roy, R., Fijalkow, N., & Neider, D. (2022). Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 13243 LNCS, pp. 263–280). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-99524-9_14
Mendeley helps you to discover research relevant for your work.