Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells

65Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Synaptotagmins (Syts) III, V, VI, and X are classified as a subclass of Syt, based on their sequence similarities and biochemical properties (Ibata, K., Fukuda, M., and Mikoshiba, K. (1998) J. Biol. Chem. 273, 12267-12273; Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427). Although they have been suggested to be involved in vesicular trafficking, as in the role of the Syt I isoform in synaptic vesicle exocytosis, their exact functions remain to be clarified, and even their precise subcellular localization is still a matter of controversy. In this study, we established rat pheochromocytoma (PC12) cell lines that stably express Syts III-, V-, VI-, and X-GFP (green fluorescence protein) fusion proteins, respectively, to determine their precise subcellular localizations. Surprisingly, Syts III-, V-, VI-, and X-GFP proteins were found to be targeted to specific organelles: Syt III-GFP to near the plasma membrane, Syt V-GFP to dense-core vesicles, Syt VI-GFP to endoplasmic reticulum-like structures, and Syt X-GFP to vesicles (other than dense-core vesicles) present in cytoplasm. We showed that Syt V-containing vesicles at the neurites of PC12 cells were processed to exocytosis in a Ca 2+-dependent manner. Immunohistochemical analysis further showed that endogenous Syt V was also localized on dense-core vesicles in the mouse brain and specifically expressed in glucagon-positive α-cells in mouse pancreatic islets, but not in β- or δ-cells. Based on these results, we propose that Syt V is a dense-core vesicle-specific Syt isoform that controls a specific type of Ca 2+-regulated secretion.

Cite

CITATION STYLE

APA

Saegusa, C., Fukuda, M., & Mikoshiba, K. (2002). Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. Journal of Biological Chemistry, 277(27), 24499–24505. https://doi.org/10.1074/jbc.M202767200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free