We investigated SF and serum proteomic fingerprints of patients suffering from RA, OA and other miscellaneous inflammatory arthritides (MIAs) in order to identify RA-specific biomarkers. SF profiles of 65 patients and serum profiles of 31 patients were studied by surface-enhanced laser desorption and ionization-time-of-flight-mass spectrometry technology. The most discriminating RA biomarkers were identified by matrix-assisted laser desorption ionization-time of flight and their overexpression was confirmed by western blotting and ELISA. Three biomarkers of 10 839, 10 445 and 13 338 Da, characterized as S100A8, S100A12 and S100A9 proteins, were the most up-regulated proteins in RA SF. Their expression was about 10-fold higher in RA SF vs OA SF. S100A8 exhibited a sensitivity of 82% and a specificity of 69% in discriminating RA from other MIAs, whereas S100A12 displayed a sensitivity of 79% and a specificity of 64%. Three peptides of 3351, 3423 and 3465 Da, corresponding to the alpha-defensins-1, -2 and -3, were also shown to differentiate RA from other MIAs with weaker sensitivity and specificity. Levels of S100A12, S100A8 and S100A9 were statistically correlated with the neutrophil count in MIA SF but not in the SF of RA patients. S100A8, S100A9, S100A12 and alpha-defensin expression in serum was not different in the three populations. The most enhanced proteins in RA SF, the S100A8, S100A9 and S00A12 proteins, distinguished RA from MIA with high accuracy. Possible implication of resident cells in this increase may play a role in RA physiopathology.
CITATION STYLE
Baillet, A., Trocmé, C., Berthier, S., Arlotto, M., Grange, L., Chenau, J., … Gaudin, P. (2010). Synovial fluid proteomic fingerprint: S100A8, S100A9 and S100A12 proteins discriminate rheumatoid arthritis from other inflammatory joint diseases. Rheumatology (Oxford, England), 49(4), 671–682. https://doi.org/10.1093/rheumatology/kep452
Mendeley helps you to discover research relevant for your work.