Knowledge of the structural properties of biological neural networks can help in understanding how particular responses and actions are generated. Recently, Witvliet et al. published the connectomes of eight isogenic Caenorhabditis elegans hermaphrodites at different postembryonic ages, from birth to adulthood. We analyzed the basic structural properties of these biological neural networks. From birth to adulthood, the asymmetry between in-degrees and out-degrees over the C. elegans neuronal network increased with age, in addition to an increase in the number of nodes and edges. The degree distributions were neither Poisson distributions nor pure power-law distributions. We have proposed a model of network evolution with different initial attractiveness for in-degrees and out-degrees of nodes and preferential attachment, which reproduces the asymmetry between in-degrees and out-degrees and similar degree distributions via the tuning of the initial attractiveness values. In this study, we present the well-preserved structural properties of C. elegans neuronal networks across development, and provide some insight into understanding the evolutionary processes of biological neural networks through a simple network model.
CITATION STYLE
Zhao, H., Shi, Z., Gong, Z., & He, S. (2023). Modeling the Evolution of Biological Neural Networks Based on Caenorhabditis elegans Connectomes across Development. Entropy, 25(1). https://doi.org/10.3390/e25010051
Mendeley helps you to discover research relevant for your work.