Background: Patients with locally advanced non-small-cell lung cancer (LA-NSCLC) have poor prognosis despite several multimodal approaches. Recently, low-dose fractionated radiotherapy concurrent to the induction chemotherapy (IC-LDRT) has been proposed to further improve the effects of chemotherapy and prognosis. Until now, the predictive value of metabolic response after IC-LDRT has not yet been investigated. Aim: to evaluate whether the early metabolic response, assessed by 18F-fluoro-deoxyglucose positron emission-computed tomography (18F-FDG PET-CT), could predict the prognosis in LA-NSCLC patients treated with a multimodal approach, including IC-LDRT. Methods: Forty-four consecutive patients (35males, mean age: 66 ± 7.8 years) with stage IIIA/IIIB NSCLC were retrospectively evaluated. Forty-four patients underwent IC-LDRT (2 cycles of chemotherapy, 40 cGy twice daily), 26/44 neo-adjuvant chemo-radiotherapy (CCRT: 50.4Gy), and 20/44 surgery. 18F-FDG PET-CT was performed before (baseline), after IC-LDRT (early) and after CCRT (final), applying PET response criteria in solid tumours (PERCIST). Patients with complete/partial metabolic response were classified as responders; patients with stable/progressive disease as non-responders. Progression free survival (PFS) and overall survival (OS) were assessed using Kaplan-Meyer analysis; the relationship between clinical factors and survivals were assessed using uni-multivariate regression analysis. Results: Forty-four out of 44, 42/44 and 23/42 patients underwent baseline, early and final PET-CT, respectively. SULpeak of primary tumour and lymph-node significantly (p = 0.004, p = 0.0002, respectively) decreased after IC-LDRT with a further reduction after CCRT (p = 0.0006, p = 0.02, respectively). At early PET-CT, 20/42 (47.6%) patients were classified as responders, 22/42 (52.3%) as non-responders. At final PET-CT, 19/23 patients were classified as responders (12 responders and 7 non-responders at early PET-CT), and 4/23 as non-responders (all non-responders at early PET-CT). Early responders had better PFS and OS than early non-responders (p ≤ 0.01). Early metabolic response was predictive factor for loco-regional, distant and global PFS (p = 0.02, p = 0.01, p = 0.005, respectively); surgery for loco-regional and global PFS (p = 0.03, p = 0.009, respectively). Conclusions: In LA-NSCLC patients, 18F-FDG metabolic response assessed after only two cycles of IC-LDRT predicts the prognosis. The early evaluation of metabolic changes could allow to personalize therapy. This multimodality approach, including both low-dose radiotherapy that increases the effects of induction chemotherapy, and surgery that removes the disease, improved clinical outcomes. Further prospective investigation of this new induction approach is warranted.
CITATION STYLE
Mattoli, M. V., Massaccesi, M., Castelluccia, A., Scolozzi, V., Mantini, G., & Calcagni, M. L. (2017). The predictive value of 18F-FDG PET-CT for assessing the clinical outcomes in locally advanced NSCLC patients after a new induction treatment: Low-dose fractionated radiotherapy with concurrent chemotherapy. Radiation Oncology, 12(1). https://doi.org/10.1186/s13014-016-0737-0
Mendeley helps you to discover research relevant for your work.