In situ detection of water leakage for textile-reinforced composites

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

By incorporating electrically conductive yarns into a waterproof membrane, one can detect epoxy resin cracking or liquid leakage. Therefore, this study examined the electrical conductivity variations of several yarns (metallic or carbon-based) for cracking and water detection. The first observations concerned the detectors’ feasibility by investigating their conductivity variations during both their resin implementation processes and their resin cracking. Throughout this experiment, two phenomena were detected: the compression and the separation of the fibres by the resin. In addition, the resin cracking had an important role in decreasing the yarns’ conductivity. The second part of this study concerned water detection. Two principles were established and implemented, first with yarns and then with yarns incorporated into the resin. First, the principle of absorption was based on the conductivity variation with the yarns’ swelling after contact with water. A short circuit was established by the creation of a conductive path when a drop of water was deposited between two conductive, parallel yarns. Through the influence of the yarns’ properties, this study explored the metallic yarns’ capacity to better detect water with a short circuit and the ability of the carbon-based yarns to detect water by the principle of absorption.

Cite

CITATION STYLE

APA

Regnier, J., Cayla, A., Campagne, C., & Devaux, E. (2020). In situ detection of water leakage for textile-reinforced composites. Sensors (Switzerland), 20(22), 1–16. https://doi.org/10.3390/s20226641

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free