Optimal design of piezoelectric cantilevered actuators for charge-based self-sensing applications

8Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Charge-based Self-Sensing Actuation (SSA) is a cost and space-saving method for accurate piezoelectric based-actuator positioning. However, the performance of its implementation resides in the choice of its geometry and the properties of the constituent materials. This paper intends to analyze the charge-based SSA’s performances dependence on the aforementioned parameters and properties for a piezoelectric cantilever. A model is established for this type of Piezoelectric Actuator (PEA), and a multi-objective function is defined. The multi-objective function consists of the weighted actuator and sensor objective functions of the PEA. The analytical optimization approach introduced herein aims to assess the evolution of the defined multi-objective function across a defined set of geometrical parameters and material properties and highlights the existence of a subset of solutions for an optimal charge-based SSA’s implementation. The commercially-available finite element analysis software, COMSOL Multiphysics, is used on the parametric model of the given structure to validate the analytical model. Then, experiments are conducted to corroborate the numerical and analytical modeling and analysis.

Cite

CITATION STYLE

APA

Liseli, J. B., Agnus, J., Lutz, P., & Rakotondrabe, M. (2019). Optimal design of piezoelectric cantilevered actuators for charge-based self-sensing applications. Sensors (Switzerland), 19(11). https://doi.org/10.3390/s19112582

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free