Brunfelsia genus is traditionally utilized in popular medicine due to its antibacterial and antifungal properties to name but a few. However, studies on the antimicrobial activity of Brunfelsia uniflora flower oleoresin have not been found yet. This study aimed to evaluate the chemical composition and antimicrobial activity of B. uniflora flower oleoresin obtained by supercritical carbon dioxide. Oleoresin from the plant dried flowers was obtained by carbon dioxide, and the chemical composition was analyzed by gas chromatographic-mass spectrometry. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) of this oleoresin for seven bacteria and eight fungi were determined using 96-well microtiter plates. The oleoresin MBC for Bacillus cereus, Enterobacter cloacae, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enterica, and Staphylococcus aureus ranged from 0.01 to 0.08 mg/mL, whereas the controls streptomycin and ampicillin varied from 0.1 and 0.5 mg/ mL. The oleoresin MFC for Aspergillus fumigatus, Aspergillus niger, Aspergillus ochraceus, Aspergillus versicolor, Penicillium funiculosum, Penicillium ochrochloron, Penicillium verrucosum var. cyclopium, and Trichoderma viride varied from 0.01 to 0.08 mg/mL, whereas the controls bifonazole and ketoconazole ranged from 0.2 to 3.5 mg/ mL. The oleoresin obtained by supercritical carbon dioxide presented bacteriostatic, bactericidal, fungistatic, and fungicidal activities that were higher than the positive controls streptomycin, ampicillin, bifonazole, and ketoconazole. The high antimicrobial activity was related to the high content of (E, E)-geranyllinalool that composes 21.0% of the oleoresin and a possible synergic action with fatty acid esters that made up 50.5% of the oleoresin. The oleoresin antimicrobial activity against common multiresistant bacteria in severe infectious processes as P. aeruginosa or against toxin-producing fungi such as P. ochrochloron or fungi that are difficult to control such as T. viride suggests the development of promising applications of this product in the food, farming, livestock, and pharmaceutical industry.
CITATION STYLE
Thiesen, L. C. T., Sugauara, E. Y. Y., Tešević, V., Glamočlija, J., Soković, M., Gonçalves, J. E., … Colauto, N. B. (2017). Antimicrobial activity and chemical composition of Brunfelsia uniflora flower oleoresin extracted by supercritical carbon dioxide. Genetics and Molecular Research, 16(2). https://doi.org/10.4238/gmr16029548
Mendeley helps you to discover research relevant for your work.