Dystroglycan is not required for localization of dystrophin, syntrophin, and neuronal nitric-oxide synthase at the sarcolemma but regulates integrin α7B expression and caveolin-3 distribution

51Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Dystroglycan is part of the dystrophin-associated protein complex, which joins laminin in the extracellular matrix to dystrophin within the subsarcolemmal cytoskeleton. We have investigated how mutations in the components of the laminin-dystroglycan-dystrophin axis affect the organization and expression of dystrophin-associated proteins by comparing mice mutant for merosin (α2-laminin, dy), dystrophin (mdx), and dystroglycan (Dag1) using immunohistochemistry and immunoblots. We report that syntrophin and neuronal nitric-oxide synthase are depleted in muscle fibers lacking both dystrophin and dystroglycan. Some fibers deficient in dystroglycan, however, localize dystrophin at the cell surface at levels similar to that in wild-type muscle. Nevertheless, these fibers have signs of degeneration/regeneration including increased cell surface permeability and central nuclei. In these fibers, syntrophin and nitric-oxide synthase are also localized to the plasma membrane, whereas the sarcoglycan complex is disrupted. These results suggest a mechanism of membrane attachment for dystrophin independent of dystroglycan and that the interaction of sarcoglycans with dystrophin requires dystroglycan. The distribution of caveolin-3, a muscle-specific component of caveolae recently found to bind dystroglycan, was affected in dystroglycan- and dystrophin-deficient mice. We also examined alternative mechanisms of cell-extracellular matrix attachment to elucidate how the muscle basement membrane may subsist in the absence of dystroglycan, and we found the α7B splice variant of the α7 integrin receptor subunit to be up-regulated. These results support the possibility that α7B integrin compensates in mediating cell-extracellular matrix attachment but cannot rescue the dystrophic phenotype.

Cite

CITATION STYLE

APA

Côté, P. D., Moukhles, H., & Carbonetto, S. (2002). Dystroglycan is not required for localization of dystrophin, syntrophin, and neuronal nitric-oxide synthase at the sarcolemma but regulates integrin α7B expression and caveolin-3 distribution. Journal of Biological Chemistry, 277(7), 4672–4679. https://doi.org/10.1074/jbc.M106879200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free