A Comparative Study of Automated Deep Learning Segmentation Models for Prostate MRI

14Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Prostate cancer is one of the most common forms of cancer globally, affecting roughly one in every eight men according to the American Cancer Society. Although the survival rate for prostate cancer is significantly high given the very high incidence rate, there is an urgent need to improve and develop new clinical aid systems to help detect and treat prostate cancer in a timely manner. In this retrospective study, our contributions are twofold: First, we perform a comparative unified study of different commonly used segmentation models for prostate gland and zone (peripheral and transition) segmentation. Second, we present and evaluate an additional research question regarding the effectiveness of using an object detector as a pre-processing step to aid in the segmentation process. We perform a thorough evaluation of the deep learning models on two public datasets, where one is used for cross-validation and the other as an external test set. Overall, the results reveal that the choice of model is relatively inconsequential, as the majority produce non-significantly different scores, apart from nnU-Net which consistently outperforms others, and that the models trained on data cropped by the object detector often generalize better, despite performing worse during cross-validation.

Cite

CITATION STYLE

APA

Rodrigues, N. M., Silva, S., Vanneschi, L., & Papanikolaou, N. (2023). A Comparative Study of Automated Deep Learning Segmentation Models for Prostate MRI. Cancers, 15(5). https://doi.org/10.3390/cancers15051467

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free