Long-term variations in the plasma sheet ion composition and substorm occurrence over 23 years

4Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Geotail satellite has been operating for almost two solar cycles (~23 years) since its launch in July 1992. The satellite carries the energetic particle and ion composition (EPIC) instrument that measures the energetic ion flux (9.4–212 keV/e) and enables the investigation of long-term variations of the ion composition in the plasma sheet for solar cycles 22–24. From the statistical analysis of the EPIC data, we find that (1) the plasma ion mass (M) is approximately 1.1 amu during the solar minimum, whereas it increases to 1.5–2.7 amu during the solar maximum; (2) the increases in M seem to have two components: a raising of the baseline levels (~1.5 amu) and a large transient enhancement (~1.8–2.7 amu); (3) the baseline level change of M correlates well with the Mg II index, which is a good proxy for the solar extreme ultraviolet (EUV) or far ultraviolet (FUV) irradiance; and (4) the large transient enhancement of M is caused by strong magnetic storms. We also study the long-term variations of substorm occurrences in 1992–2015 that are evaluated with the number of Pi2 pulsations detected at the Kakioka observatory. The results suggest no clear correlation between the substorm occurrence and the Mg II index. Instead, when the substorms are classified into externally triggered events and non-triggered events, the number of the non-triggered events and the Mg II index are negatively correlated. We interpret these results that the increase in the solar EUV/FUV radiation enhances the supply of ionospheric ions (He+ and O+ ions) into the plasma sheet to increase M, and the large M may suppress spontaneous plasma instabilities initiating substorms and decrease the number of the non-triggered substorms. The present analysis using the unprecedentedly long-term dataset covering ~23 years provides additional observational evidence that heavy ions work to prevent the occurrence of substorms.

Cite

CITATION STYLE

APA

Nosé, M. (2016, December 1). Long-term variations in the plasma sheet ion composition and substorm occurrence over 23 years. Geoscience Letters. SpringerOpen. https://doi.org/10.1186/s40562-015-0033-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free