A unique self-truncation of bacterial GH5 endoglucanases leads to enhanced activity and thermostability

3Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: β-1,4-endoglucanase (EG) is one of the three types of cellulases used in cellulose saccharification during lignocellulosic biofuel/biomaterial production. GsCelA is an EG secreted by the thermophilic bacterium Geobacillus sp. 70PC53 isolated from rice straw compost in southern Taiwan. This enzyme belongs to glycoside hydrolase family 5 (GH5) with a TIM-barrel structure common among all members of this family. GsCelA exhibits excellent lignocellulolytic activity and thermostability. In the course of investigating the regulation of this enzyme, it was fortuitously discovered that GsCelA undergoes a novel self-truncation/activation process that appears to be common among GH5 enzymes. Results: Three diverse Gram-positive bacterial GH5 EGs, but not a GH12 EG, undergo an unexpected self-truncation process by removing a part of their C-terminal region. This unique process has been studied in detail with GsCelA. The purified recombinant GsCelA was capable of removing a 53-amino-acid peptide from the C-terminus. Natural or engineered GsCelA truncated variants, with up to 60-amino-acid deletion from the C-terminus, exhibited higher specific activity and thermostability than the full-length enzyme. Interestingly, the C-terminal part that is removed in this self-truncation process is capable of binding to cellulosic substrates of EGs. The protein truncation, which is pH and temperature dependent, occurred between amino acids 315 and 316, but removal of these two amino acids did not stop the process. Furthermore, mutations of E142A and E231A, which are essential for EG activity, did not affect the protein self-truncation process. Conversely, two single amino acid substitution mutations affected the self-truncation activity without much impact on EG activities. In Geobacillus sp. 70PC53, the full-length GsCelA was first synthesized in the cell but progressively transformed into the truncated form and eventually secreted. The GsCelA self-truncation was not affected by standard protease inhibitors, but could be suppressed by EDTA and EGTA and enhanced by certain divalent ions, such as Ca2+, Mg2+, and Cu2+. Conclusions: This study reveals novel insights into the strategy of Gram-positive bacteria for directing their GH5 EGs to the substrate, and then releasing the catalytic part for enhanced activity via a spontaneous self-truncation process.

Cite

CITATION STYLE

APA

Wu, M. H., Kao, M. R., Li, C. W., Yu, S. M., & Ho, T. H. D. (2022). A unique self-truncation of bacterial GH5 endoglucanases leads to enhanced activity and thermostability. BMC Biology, 20(1). https://doi.org/10.1186/s12915-022-01334-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free