Regulation of hyaluronidase activity by alternative mRNA splicing

82Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Hyaluronidase is a hyaluronic acid-degrading endoglycosidase that is present in many toxins and the levels of which are elevated in cancer. Increased concentration of HYAL1-type hyaluronidase correlates with tumor progression and is a marker for grade (G) 2 or 3 bladder cancer. Using bladder tissues and cells, prostate cancer cells, and kidney tissues and performing reverse transcription-PCR, cDNA cloning, DNA sequencing, and in vitro translation, we identified splice variants of HYAL1 and HYAL3. HYAL1v1 variant lacks a 30-amino acid (aa) sequence (301-330) present in HYAL1 protein. HYAL1v1, HYAL1v2 (aa 183-435 present in HYAL1 wild type), HYAL1v3 (aa 1-207), HYAL1v4 (aa 260-435), and HYAL1v5 (aa 340-435) are enzymatically inactive and are expressed in normal tissues/cells and G1 bladder tumor tissues. However, HYAL1 wild type is expressed in G2/G3 tumors and in invasive tumor cells. Stable transfection and HYAL1v1-specific antibody confirmed that the HYAL1 sequence from aa 301 to 330 is critical for hyaluronidase activity. All tumor cells and tissues mainly express HYAL3 variants. HYAL3v1 lacks a 30-aa sequence (299-328) present in HYAL3 protein, that is homologous to the 30-aa HYAL1 sequence. HYAL3v1, HYAL3v2 (aa 251-417 present in HYAL3 wild type), and HYAL3v3 (aa 251-417, but lacking aa 299-328), are enzymatically inactive. Although splicing of a single independent exon generates HYAL1v1 and HYAL3v1, internal exon splicing generates the other HYAL1/HYAL3 variants. These results demonstrate that alternative mRNA splicing controls cellular expression of enzymat. ically active hyaluronidase and may explain the elevated hyaluronidase levels in bladder/prostate cancer.

Cite

CITATION STYLE

APA

Lokeshwar, V. B., Schroeder, G. L., Carey, R. I., Soloway, M. S., & Iida, N. (2002). Regulation of hyaluronidase activity by alternative mRNA splicing. Journal of Biological Chemistry, 277(37), 33654–33663. https://doi.org/10.1074/jbc.M203821200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free