Prediction of Prednisolone Dose Correction Using Machine Learning

2Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Wrong dose, a common prescription error, can cause serious patient harm, especially in the case of high-risk drugs like oral corticosteroids. This study aims to build a machine learning model to predict dose-related prescription modifications for oral prednisolone tablets (i.e., highly imbalanced data with very few positive cases). Prescription data were obtained from the electronic medical records at a single institute. Cluster analysis classified the clinical departments into six clusters with similar patterns of prednisolone prescription. Two patterns of training datasets were created with/without preprocessing by the SMOTE method. Five ML models (SVM, KNN, GB, RF, and BRF) and logistic regression (LR) models were constructed by Python. The model was internally validated by five-fold stratified cross-validation and was validated with a 30% holdout test dataset. Eighty-two thousand five hundred fifty-three prescribing data for prednisolone tablets containing 135 dose-corrected positive cases were obtained. In the original dataset (without SMOTE), only the BRF model showed a good performance (in test dataset, ROC-AUC:0.917, recall: 0.951). In the training dataset preprocessed by SMOTE, performance was improved on all models. The highest performance models with SMOTE were SVM (in test dataset, ROC-AUC: 0.820, recall: 0.659) and BRF (ROC-AUC: 0.814, recall: 0.634). Although the prescribing data for dose-related collection are highly imbalanced, various techniques such as the following have allowed us to build high-performance prediction models: data preprocessing by SMOTE, stratified cross-validation, and BRF classifier corresponding to imbalanced data. ML is useful in complicated dose audits such as oral prednisolone.

Cite

CITATION STYLE

APA

Sato, H., Kimura, Y., Ohba, M., Ara, Y., Wakabayashi, S., & Watanabe, H. (2023). Prediction of Prednisolone Dose Correction Using Machine Learning. Journal of Healthcare Informatics Research, 7(1), 84–103. https://doi.org/10.1007/s41666-023-00128-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free