Aims We previously reported that preconditioning of stem cells with insulin-like growth factor-1 (IGF-1) translocated connexin-43 (Cx-43) into mitochondria, causing cytoprotection. We posit that these preconditioning effects could be simulated by mitochondria-specific overexpression of Cx-43. Methods and resultsDuring IGF-1-induced preconditioning of C57black/6 mouse bone marrow stem cell antigen-1+ (Sca-1+) cells, Cx-43 was mainly translocated onto the mitochondrial inner membrane, which was abrogated by an extracellular signal-regulated kinases 1 and 2 (ERK1/2) blocker PD98059. To investigate the role of mitochondrial Cx-43, we successfully designed a vector coding for full-length mouse Cx-43 with a mitochondria-targeting sequence (mito-Cx-43) and cloned into a shuttle vector (pShuttle-IRES-hrGFP-1) for mitochondria-specific overexpression of Cx-43 (mito-Cx-43). Sca-1+ cells with mito-Cx-43 reduced cytosolic accumulation of cytochrome c, lowered caspase-3 activity, and improved survival during index oxygen-glucose deprivation as determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling and lactate dehydrogenase assays. Computational analysis revealed a B-cell lymphoma-2 (Bcl-2) homology domain-3 (BH3) motif in Cx-43 with a conserved pattern of amino acids consistent with the Bcl-2 family that regulated cytochrome c release. Moreover, computational secondary structure prediction indicated an extended-helix in this region, a known condition for BH3-driven protein-protein interactions.Conclusion Cx-43 translocation into mitochondria during preconditioning was ERK1/2-dependent. Expression of mito-Cx-43 simulated the cytoprotective effects of preconditioning in stem cells. Structural features of Cx-43 were shared with the Bcl-2 family as determined by computational analysis. © 2010 The Author.
CITATION STYLE
Lu, G., Haider, H. K., Porollo, A., & Ashraf, M. (2010). Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells. Cardiovascular Research, 88(2), 277–286. https://doi.org/10.1093/cvr/cvq293
Mendeley helps you to discover research relevant for your work.