Leveraging the implicit structure within social media for emergent rumor detection

82Citations
Citations of this article
94Readers
Mendeley users who have this article in their library.

Abstract

The automatic and early detection of rumors is of paramount importance as the spread of information with questionable veracity can have devastating consequences. This became starkly apparent when, in early 2013, a compromised Associated Press account issued a tweet claiming that there had been an explosion at the White House. This tweet resulted in a significant drop for the Dow Jones Industrial Average. Most existing work in rumor detection leverages conversation statistics and propagation patterns, however, such patterns tend to emerge slowly requiring a conversation to have a significant number of interactions in order to become eligible for classification. In this work, we propose a method for classifying conversations within their formative stages as well as improving accuracy within mature conversations through the discovery of implicit linkages between conversation fragments. In our experiments, we show that current state-of-the-art rumor classification methods can leverage implicit links to significantly improve the ability to properly classify emergent conversations when very little conversation data is available. Adopting this technique allows rumor detection methods to continue to provide a high degree of classification accuracy on emergent conversations with as few as a single tweet. This improvement virtually eliminates the delay of conversation growth inherent in current rumor classification methods while significantly increasing the number of conversations considered viable for classification.

Cite

CITATION STYLE

APA

Sampson, J., Morstatter, F., Wu, L., & Liu, H. (2016). Leveraging the implicit structure within social media for emergent rumor detection. In International Conference on Information and Knowledge Management, Proceedings (Vol. 24-28-October-2016, pp. 2377–2382). Association for Computing Machinery. https://doi.org/10.1145/2983323.2983697

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free