One-Pot Synthesis of Pyrite Nanoplates Supported on Chitosan Hydrochar as Fenton Catalysts for Organics Removal from Water

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

The Fenton reaction is a powerful method for removing refractory pollutants from water, yet it is restricted by shortcomings such as pH adjustments and generation of iron-containing sludge. In this study, a highly dispersed pyrite nanoplate supported on chitosan hydrochar was prepared through a simple one-pot hydrothermal method. The interactions between chitosan and Fe3+ suppressed the accumulation of FeS2 in the crystal growth period and led to the formation of pyrite nanoplates with many exposed (210) facets. Thus, it showed excellent Fenton-like activity and the removal efficiency of AR 73 reached 99.9% within 60 min. The catalyst could be used in a wide pH range of 3~10. Hydroxyl radicals are the main reactive oxygen species in this catalytic system. The self-reduction of generated Fe(III) species by sulfur via inner electron transfer promoted the Fe(II)/Fe(III) redox cycle, and the presence of graphene facilitated the adsorption of pollutants. This catalyst also showed good reuse performances as well as stability, which has promising prospects for practical use in wastewater treatment.

Cite

CITATION STYLE

APA

Sun, A., Zhao, H., Wang, M., Ma, J., Jin, H., & Zhang, K. (2022). One-Pot Synthesis of Pyrite Nanoplates Supported on Chitosan Hydrochar as Fenton Catalysts for Organics Removal from Water. Catalysts, 12(8). https://doi.org/10.3390/catal12080858

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free