Blood vessel imaging at pre-larval stages of Zebrafish embryonic development

5Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

The zebrafish (Danio rerio) is an increasingly popular animal model biological system. In cardiovascular research, it has been used to model specific cardiac phenomena as well as to identify novel therapies for human cardiovascular disease. While the zebrafish cardiovascular system functioning is well examined at larval stages, the mechanisms by which vessel activity is initiated remain a subject of intense investigation. In this research, we report on an in vivo stain-free blood vessel imaging technique at pre-larval stages of zebrafish embryonic development. We have developed the algorithm for the enhancement, alignment and spatiotemporal analysis of bright-field microscopy images of zebrafish embryos. It enables the detection, mapping and quantitative characterization of cardiac activity across the whole specimen. To validate the proposed approach, we have analyzed multiple data cubes, calculated vessel images and evaluated blood flow velocity and heart rate dynamics in the absence of any anesthesia. This non-invasive technique may shed light on the mechanism of vessel activity initiation and stabilization as well as the cardiovascular system’s susceptibility to environmental stressors at early developmental stages.

Cite

CITATION STYLE

APA

Machikhin, A. S., Volkov, M. V., Burlakov, A. B., Khokhlov, D. D., & Potemkin, A. V. (2020). Blood vessel imaging at pre-larval stages of Zebrafish embryonic development. Diagnostics, 10(11). https://doi.org/10.3390/diagnostics10110886

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free