Prostaglandin E2 (PGE2) blocks mast-cell (MC)-dependent allergic responses in humans but activates MCs in vitro. We assessed the functions of the EP receptors for PGE2 on cultured human MCs (hMCs). hMCs expressed the EP3, EP2, and EP 4 receptors. PGE2 stimulated the accumulation of cyclic adenosine monophosphate (cAMP), and suppressed both FcεRI-mediated eicosanoid production and tumor necrosis factor-α (TNF-α) generation. PGE2 also caused phosphorylation of extracellular signal-regulated kinase (ERK), exocytosis, and production of prostaglandin D2 (PGD2), as well as leukotriene C4 (LTC 4) when protein kinase A (PKA) was inhibited. An EP3 receptor-selective agonist, AE-248, mimicked PGE2-mediated ERK phosphorylation, exocytosis, and eicosanoid formation. Selective agonists of both EP2 and EP4 receptors (AE1-259-01 and AE-329, respectively) stimulated cAMP accumulation. No selective agonist, alone or in combination, was as effective as PGE2. AE-248, AE1-259-01, and AE-329 all inhibited FcεRI-mediated TNF-α generation, while AE1-259-01 blocked eicosanoid production. PGE2 caused the expression of inducible cAMP early repressor (ICER) by a pathway involving PKA and ERK. Thus, while PGE2 activates MCs through EP3 receptors, it also counteracts FcεRI-mediated eicosanoid production through EP2 receptors and PKA, and blocks cytokine transcription. These functions explain the potency of PGE2 as a suppressor of early- and late-phase allergic responses. © 2006 by The American Society of Hematology.
CITATION STYLE
Feng, C., Beller, E. M., Bagga, S., & Boyce, J. A. (2006). Human mast cells express multiple EP receptors for prostaglandin E 2 that differentially modulate activation responses. Blood, 107(8), 3243–3250. https://doi.org/10.1182/blood-2005-07-2772
Mendeley helps you to discover research relevant for your work.